SAMPLE INFORMATION SUMMARY ALDER GOLD AND COPPER COMPANY INTEGRATED ASSESSMENT TWISP, WASHINGTON Table 2-1 | Project
Sampling
Location | Parameter/Limits | Design
Rationale | Sampling Design Assumptions | Sample Selection
Procedures ^a | Measurement
Classification | Non-
Standard
Method
Validation ^b | |---|---|---|--|--|--|---| | Groundwater
(Domestic and
Municipal
wells) | pH (Field Screening) / NA
Turbidity / NA | Determine WQP
using on-site
methods | Local domestic wells are representative of groundwater conditions | Collected from
residential and
municipal wells | Critical for
engineering
purposes | Manufacturers
directions and
method
requirements | | | TAL metals / CRDL | Determine
presence of
hazardous
substances | Local domestic and municipal wells are representative of groundwater conditions | Collected from residential and municipal wells | Critical | NA | | | Anions / NA; Silica / NA;
TOC / NA; TSS / NA;
Hardness / NA; TDS / NA;
Arsenic Speciation / NA;
Pesticides / CRQL;
Carbonate & Bicarbonate /
NA | Determine WQP,
and engineering
parameters | Local domestic and municipal wells are representative of groundwater conditions | Collected from
residential and
municipal wells | Critical for
engineering and
water
characterization
purposes | Per Method | | Groundwater
(Monitoring
wells) | TAL metals / CRDL | Determine the
presence of
hazardous
substances | Residual contamination exists from past operations and has migrated to groundwater | Collected from monitoring wells | Critical | NA | | | Anions / NA; TDS / NA;
Carbonate & Bicarbonate /
NA | Determine WQP | Local monitoring wells are representative of groundwater conditions | Collected from monitoring wells | Critical for water
characterization
purposes | Per Method | | Surface Water | TAL metals / CRDL | Determine the
presence of
hazardous
substances | Residual contamination exists from past operations and has migrated to surface water | Collect from nearby surface water | Critical | NA | | Sediment | TAL metals / CRDL & PRGs | Determine the
presence of
hazardous
substances | Residual contamination exists from past operations and has migrated to sediment | Collect from nearby sediment | Critical | NA | | Surface soil | TAL metals / CRDL & PRGs | Determine the
presence of
hazardous
substances | Residual contamination exists from past operations and has migrated to surface soil | Collect from mill
building, tailings
ponds, residences,
and background
locations | Critical | NA | | Subsurface
soil | TAL metals/CRDL & PRGs | Determine the
presence of
hazardous
substances | Residual contamination exists from past operations and has migrated to subsurface soil | Collect from tailings
ponds and
background location | Critical | NA | |--------------------|---|---|--|---|---|------------| | | Geotechnical / NA
SPLP (TAL metals / NA;
Anions / NA; TDS / NA;
Carbonate & Bicarbonate /
NA) | Determine
engineering
parameters and
characterize
tailings pond
leachate | Residual contamination exists from past operations and has migrated to subsurface soil | Collect from tailings ponds | Critical for
engineering and
leachate
characterization
purposes | Per method | ^a Sample locations will be determined from on-site observations and historical information. ### Key: CRDL QC = Contract-required detection limit. = Quality control. Critical = Required to achieve project objectives or limits on decision errors. SPLP = Synthetic precipitate leaching procedure. = Contract-required quantitation limit. = Soil Classification, Shear stress, and California Bearing Ratio. = Target Analyte List. = Total dissolved solids. TAL TDS CRQL Geotechnical = Not Applicable. = Chlorinated pesticides. NA TSS = Total suspended solids. = Total organic carbon. Pesticides TOC = Preliminary Remedial Goals. WQP = Water quality parameters. PRGs b Data will be validated based on the laboratory statement of work QC limits and laboratory and method QC limits. ### Table 2-2 SAMPLE ANALYSES SUMMARY ALDER GOLD AND COPPER COMPANY INTEGRATED ASSESSMENT TWISP, WASHINGTON Location Matrix **Analytical Parameters and** Sample Container(s) Numbe Sample Technical Holding Timeb r of Method (or equivalent Preservation Sample method) Collecte $\mathbf{d}^{\mathbf{a}}$ Onsite and Surface Soil Target Analyte List metals Cool to $4^{\circ}C \pm 2^{\circ}C$ 180 days from collection One 8-oz wide-mouth glass jar with up to 13 near site (CLPAS) ILM04.1 (28 days for mercury) Teflon-lined lid Onsite and near site Subsurface up to 9 Target Analyte List metals Cool to $4^{\circ}C \pm 2^{\circ}C$ 180 days from collection One 8-oz wide-mouth glass jar with (CLPAS) ILM04.1 Soil (28 days for mercury) Teflon-lined lid SPLP: Target Analyte List metals 180 days from collection to One 8-oz wide-mouth glass jar with Cool to $4^{\circ}C \pm 2^{\circ}C$ up to 4 (SW-846) 1312 and Teflon-lined lid extraction 6000 and 7000 Series 180 days from extraction to analysis (28 days for mercury) SPLP: Inorganic Anions / EPA Cool to $4^{\circ}C \pm 2^{\circ}C$ 48 hours from collection to analysis One 125-mL polyethylene bottle Method 300 or 28 days from collection to analysis SPLP: Carbonate, Bicarbonate / Cool to 4°C ± 2°C TBD TBD USGS Method SPLP: Total Dissolved Solids / Cool to 4°C ± 2°C 7 days from collection to analysis One 1-L polyethylene bottle EPA Method 160.1 Soil Classification / ASTM D2487 Cool to $4^{\circ}C \pm 2^{\circ}C$ TBD TBD Cool to $4^{\circ}C \pm 2^{\circ}C$ Shear Test / ASTM D3080 TBD TBD California Bearing Ratio / Cool to $4^{\circ}C \pm 2^{\circ}C$ TBD TBD ASTM D1883 Sediment up to 4 Target Analyte List metals Cool to 4°C ± 2°C 180 days from collection One 8-oz wide-mouth glass jar with (CLPAS) ILM04.1 (28 days for mercury) Teflon-lined lid Cool to $4^{\circ}C \pm 2^{\circ}C$ HNO₃ to pH \leq 2 up to 4 Target Analyte List metals 180 days from collection One 1-Liter polyethylene bottle Surface Water (CLPAS) ILM04.1 (28 days for mercury) Cool to $4^{\circ}C \pm 2^{\circ}C$; HNO_3 to $pH \le 2$ 180 days from collection Groundwater 22 Target Analyte List metals One 1-Liter polyethylene bottle (Domestic (CLPAS) ILM04.1 (28 days for mercury) and municipal wells) 20 Pesticides (CLPAS) OLC03.2 Cool to $4^{\circ}C \pm 2^{\circ}C$ 7 days from collection to Two 40-mL VOA vials with extraction: Teflon-lined septa 40 days from extraction to analysis | _ | | | _ | _ | | | |---|--------------------------------------|----------|---|---|---|---------------------------------| | | | 20 | Inorganic Anions / EPA Method
300 | Cool to 4°C ± 2°C | 48 hours from collection to analysis
or 28 days from collection to
analysis | One 125-mL polyethylene bottle | | | | 20 | Carbonate, Bicarbonate / EPA
Method 310.1 | Cool to 4°C ± 2°C | 14 days from collection to analysis | One 250-mL polyethylene bottle | | | | 20 | Silica / Method 370.1 | Cool to 4°C ± 2°C | 28 days from collection to analysis | One 250-mL polyethylene bottle | | | | 20 | Total Organic Carbon / EPA H ₂
Method 415.1 | SO ₄ to pH \leq 2;
Cool to 4°C \pm 2°C | 28 days from collection to analysis | One 125-mL polyethylene bottle | | | | 20 | Turbidity / EPA Method 180.1 | Cool to 4°C ± 2°C | 48 hours from collection to analysis | One 125-mL polyethylene bottle | | | | 20 | pH / EPA Method 150.1 | Cool to 4°C ± 2°C | Immediate | One 125-mL polyethylene bottle | | | | 20 | Hardness / EPA Method 130.2 | HNO ₃ to pH \leq 2;
Cool to 4°C \pm 2°C | 6 months from collection to analysis | One 125-mL polyethylene bottle | | | | 20 | Total Dissolved Solids / EPA
Method 160.1 | Cool to 4°C ± 2°C | 7 days from collection to analysis | One 1-L polyethylene bottle | | | | 20 | Total Suspended Solids / EPA
Method 160.2 | Cool to 4°C ± 2°C | 7 days from collection to analysis | One 1-L polyethylene bottle | | | | 3 | Arsenic Speciation / EPA Method
1632 | Cool to $4^{\circ}C \pm 2^{\circ}C$;
HCl to pH ≤ 2 | 28 days | One 1-L polyethylene bottle | | | Groundwater
(Monitoring
wells) | | Target Analyte List metals
(CLPAS) ILM04.1 | Cool to 4°C ±2°C;
HNO ₃ to pH≤2 | 180 days from collection
(28 days for mercury) | One 1-Liter polyethylene bottle | | | | up to 10 | Inorganic Anions / EPA Method
300 | Cool to 4°C ± 2°C | 48 hours from collection to analysis
or 28 days from collection to
analysis | One 125-mL polyethylene bottle | | | | up to 10 | Carbonate, Bicarbonate / EPA
Method 310.1 | Cool to 4°C ± 2°C | 14 days from collection to analysis | One 250-mL polyethylene bottle | | | | up to 10 | Total Dissolved Solids / EPA
Method 160.1 | Cool to 4°C ± 2°C | 7 days from collection to analysis | One 1-L polyethylene bottle | | - | | | | | | | The number of samples presented is an estimate; the actual number of samples to be collected will be determined in the field. CLPAS = Contract Laboratory Program Analytical Services. EPA = U. S. Environmental Protection Agency. = Milliliter. mL= Ounce. Pesticides = Chlorinated pesticides. = Synthetic precipitate leaching procedure. HNO₃ = Nitric Acid. SPLP H₂SO₄ = Sulfuric Acid. TBD = To be determined. = Liter. b Technical holding times have been established only for water matrices. Water technical holding times were applied to sediment and soil samples where applicable; in some cases, recommended sediment/soil holding times are listed. ### Table 2-3 ## QA/QC ANALYTICAL SUMMARY AND FIXED LABORATORY ANALYTICAL METHODS ALDER GOLD AND COPPER COMPANY INTEGRATED ASSESSMENT TWISP, WASHINGTON | Laboratory | Matrix | Parameters
(Method or
equivalent) | Method
Description/
Detection Limits | Total Field
Samples ^a /
Containers | QA/QC Sample Summary
Analyses/Containers | | | | Total Field
and QA/QC
Analyses/
tainers ^d | Precision
and
Accuracy | |---|-------------------------------------|--|---|---|---|--------------------------------|--------------------------------|-------------------------------|---|------------------------------| | | | | | | Trip
Bla pk ar | Rinsate
ks ^b MS/ | Organic
MSD ^c MS | Inorganic
Dup ^c | <u> </u> | | | Field Analysis | Groundwater | pH (150.1)
Turbidity
(EPA Method
180.1) | Electrometric/0 - 14
Nephelometric/
0.1 NTU | 20/20
20/20 | NA NA | NA
NA | NA
NA | NA
NA | 20/20
20/20 | NA
Per Method | | EPA, Region
10, or CLP
Laboratory | Groundwater
and Surface
Water | TAL metals
(CLPAS ILM04.1) | AA and ICP/CRDL | 36/36 | NA | 2/2 | NA | 2/2 | 40/40 | 75%-125%
+/- 35% | | | Groundwater | Pesticides
(CLPAS OLC03.2) | GC and ECD/CRQL | 20/20 | NA | 1/2 | 1/4 | NA | 22/26 | OLC03.2 /
OLC03.2 | | EPA, Region
10, or
Commercial
Laboratory | Groundwater | Inorganic Anions
(EPA Method 300) | Ion chromatography/
0.1 to 1.0 mg/L | 30/30 | NA | 2/2 | NA | 2/2 | 32/32 | Per Method | | • | | Carbonate and
Bicarbonate (EPA
Method 310.1) | TBD | 30/30 | NA | 2/2 | NA | 2/2 | 32/32 | Per Method | | | | Silica
(Method 370.1) | Colorimetric/2 mg/L | 20/20 | NA | 1/1 | NA | 1/1 | 22/22 | Per Method | | | | Total Organic
Carbon
(EPA Method
415.1) | Combustion/2 mg/L | 20/20 | NA | 1/1 | 1/1 | NA | 22/22 | Per Method | | | | Hardness
(EPA Method
130.2) | Titrimetric/0.1 mg/L | 20/20 | NA | 1/1 | NA | 1/1 | 22/22 | Per Method | | | | Total Dissolved
Solids
(EPA Method
160.1) | Weight/20 mg/L | 30/30 | NA | NA | NA | NA | 30/30 | Per Method | | | | Total Suspended
Solids
(EPA Method
160.2) | Weight/10 mg/L | 20/20 | NA | NA | NA | NA | 20/20 | Per Method | | | | Arsenic Speciation
(EPA Method
1632) | GC & AA/0.003 ug/L | 3/3 | NA | 1/1 | NA | 1/1 | 5/5 | Per Method | |---|------------------------------|---|---|-------|----|-----|----|-----|-------|---------------------| | EPA, Region
10, or CLP
Laboratory | Surface Soil
and Sediment | Target Analyte List
metals
(CLPAS ILM04.1) | AA and ICP/CRDL | 17/17 | NA | 2/2 | NA | 2/0 | 21/18 | ILM04.1/
ILM04.1 | | EPA, Region
10, or
Commercial
Laboratory | Subsurface Soil | SPLP [Target
Analyte List metals
(EPA 1312/6000/
7000 Series);
Inorganic anions
(EPA Method
300); carbonate
and bicarbonate
(EPA Method
310.1); TDS (EPA
Method 160.1)] | AA and ICP/1 mg/L Ion chromatography/ 0.1 to 1.0 mg/L TBD / TBD Weight/20 mg/L | 4/4 | NA | 1/1 | NA | 1/0 | 6/5 | Per Method | | | | Target Analyte List
metals
(CLPAS ILM04.1) | AA and ICP/CRDL | 9/9 | NA | 1/1 | NA | 1/0 | 11/10 | ILM04.1/
ILM04.1 | | | | Soil Classification
(ASTM D-2487) | Descriptive/NA | 2/2 | NA | NA | NA | NA | 2/2 | NA | | | | Direct Shear Test
(ASTM D-3080) | Stress/NA | 2/2 | NA | NA | NA | NA | 2/2 | NA | | | | California Bearing
Ratio
(ASTM D-1883) | Strength/NA | 2/2 | NA | NA | NA | NA | 2/2 | NA | - The total number of field samples is estimated. - b The total number of rinsate blanks could vary depending on the total number of sample shipments. The sample numbers are based on one rinsate per 20 samples per nondedicated sampling device. Note that rinsate blanks consist of water aliquots for both soil and water field samples. - No extra volume is required for soil/sediment samples; for water samples, triple volume is required for organic analyses and double volume is required for inorganic analyses. Sample numbers are based on one MS/MSD per 20 samples per matrix. - d Total analyses and containers includes field and QA/QC aliquots to be submitted for fixed laboratory analysis. Note that rinsate blanks consist of water aliquots for both soil and water field samples. - e Includes duplicate, MS/MSD, and field blank samples. Key: AA = Atomic absorption furnace technique. $\begin{array}{lll} \text{CLPAS= Contract Laboratory Program Analytical Services.} & \text{ug/L} & = \text{micrograms per Liter.} \\ \text{CRDL} & = \text{Contract-required detection limit.} & \text{mg/L} & = \text{milligrams per Liter.} \\ \end{array}$ CRQL = Contract-required quantitation limit. MS/DUP = Matrix spike/duplicate ECD = Electron capture detection. MS/MSD = Matrix spike/matrix spike duplicate. EPA = United States Environmental Protection Agency. NA = Not applicable. GC = Gas chromatography. NTU = Nephelometric turbidity units. OA/OC = Quality courses quality control. CP = Inductively coupled argon plasma. QA/QC = Quality assurance/quality control ug/L = micrograms per Liter. TAL = Target Analyte List.